news

Discovery could lead to photosynthesis being ‘redesigned’ to increase crop yields

Posted: 13 November 2019 | | No comments yet

The University of Sheffield study shows how an electrical reaction in protein complex cytochrome b6f provides the energy that plants need to turn carbon dioxide into the carbohydrates and biomass that sustain the global food chain.

Discovery could lead to photosynthesis being 'redesigned' to increase crop yields

Scientists have allegedly solved the structure of one of the key components of photosynthesis, a discovery that could lead to photosynthesis being ‘redesigned’ to achieve higher yields and meet urgent food security needs.

The study, led by the University of Sheffield, reveals the structure of cytochrome b6f – the protein complex that significantly influences plant growth via photosynthesis.

Using a high-resolution structural model, the team found that the protein complex provides the electrical connection between the two light-powered chlorophyll-proteins (Photosystems I and II) found in the plant cell chloroplast that convert sunlight into chemical energy.

leaf

Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organisms’ activities.

“Our study provides important new insights into how cytochrome b6f utilises the electrical current passing through it to power up a ‘proton battery’. This stored energy can then be then used to make ATP, the energy currency of living cells. Ultimately this reaction provides the energy that plants need to turn carbon dioxide into the carbohydrates and biomass that sustain the global food chain,” said Lorna Malone, the first author of the study and a PhD student in the University of Sheffield’s Department of Molecular Biology and Biotechnology.

The high-resolution structural model, determined using single-particle cryo-electron microscopy, reveals new details of the additional role of cytochrome b6f as a sensor to tune photosynthetic efficiency in response to ever-changing environmental conditions. This response mechanism protects the plant from damage during exposure to harsh conditions such as drought or excess light.

Dr Matt Johnson, reader in Biochemistry at the University of Sheffield and one of the supervisors of the study, added: “Cytochrome b6f is the beating heart of photosynthesis which plays a crucial role in regulating photosynthetic efficiency.

“Previous studies have shown that by manipulating the levels of this complex we can grow bigger and better plants. With the new insights we have obtained from our structure we can hope to rationally redesign photosynthesis in crop plants to achieve the higher yields we urgently need to sustain a projected global population of 9-10 billion by 2050”.