• Facebook
  • Twitter
  • LinkedIn
  • Google +
  • RSS
  • Email newsletter

Near Infrared Spectroscopy (NIR) - Articles and news items

Quality Control supplement 2014

Issue 3 2014, Supplements, Z Homepage Promo / 23 June 2014 / Vincent Baeten, Philippe Vermeulen, Juan Antonio Fernández Pierna, Pierre DardenneSatu Salo, Koni Grob, Bart Roodenburg, Monika Hohmann, Christine Felbinger, Norbert Christoph, Helmut Wachter, Ulrike Holzgrabe

Targeted to untargeted detection of contaminants and foreign bodies in food and feed using NIR spectroscopy, Quantitative determination of taurine in energy drinks by 1H NMR spectroscopy, and Quality Control Roundtable…

Near Infrared: Food fraud and NIRS

Issue 1 2014 / 5 March 2014 / Saskia van Ruth, Head of Authenticity & Novel Foods Business Unit & Professor of Food Authenticity and Integrity and Rob Frankhuizen, Scientist, State Institute for Quality Control of Agricultural Products, RIKILT Wageningen University and Research Centre

Nowadays foods and ingredients are sourced from many different parts of the globe. Since the 1960s, global food transport has been increasing at an exponential rate, faster than food production itself. For certain countries, this network ensures access to any food item regardless of season or origin. The number of countries relying on international food trade has increased and traded food changed from raw materials towards processed and branded products. As a consequence, trade fluxes between countries to form a complex, extensive, intersecting network. Optimised for rapid, low-cost production from all sources, it has consequently resulted in fragile networks that are vulnerable to food fraud that reaches every table in the world…

Whatever it takes for protein analysis: Kjeldahl, Dumas, or NIR

Webinars, Z Homepage Promo / 30 September 2013 / François Bourdichon (Barry Callebaut ), William Ickes, Jürgen Müller & Giovanni Campolongo (BÜCHI)

Whereas Kjeldahl is a proven method for all kind of sample matrices, Dumas excels in unattended processing at high throughput, and NIR is matchless in terms of immediate and comprehensive multi-component analysis. BUCHI introduces you to the Master series, which includes the KjelMaster, DuMaster, and NIRMaster instruments for protein analysis…

Infrared spectroscopy and its role to monitor wine fermentation

Issue 4 2013 / 28 August 2013 / Daniel Cozzolino School of Agriculture, Food and Wine, University of Adelaide

The term Process Analytical Technologies (PAT) describes the field of process analysis and measurement technologies that have been expanded to include several physical, chemical, mathematical and other analytical tools used to characterise chemical and biological processes. Over the past few years, on- in- and at-line analysis, the so-called PAT technologies, have demonstrated themselves to be one of the most efficient and advanced tools for continuous monitoring, as well as controlling the processes and the quality of raw ingredients and products in several applications among food processing, petrochemical and pharmaceutical industries.

Coupling NIR spectroscopy and chemometrics for the assessment of food quality

Issue 1 2013 / 28 February 2013 / Federico Marini, Department of Chemistry, University of Rome ‘La Sapienza’

In the last 30 years, there has been increasing attention paid to the possibility of using Near Infrared (NIR) spectroscopy to deal with different aspects of food quality assessment. Indeed, the intrinsic characteristics of this technique, which, requiring little or no sample pretreatment, allows high throughput analyses in a rapid and non-invasive/non-destructive way, together with its easy on-line applicability, make NIR particularly suitable for real-time assessment and control of food quality both in a laboratory and on an industrial scale.

NIRS of chocolate and its chemometric analysis

Issue 6 2012 / 11 January 2013 / Jürgen Stohner, Brenno Zucchetti, Fabian Deuber and Fabian Hobi, ZHAW Zurich University of Applied Sciences, ICBC Institute of Chemistry and Biological Chemistry and Bernhard Lukas and Manfred Suter, Max Felchlin AG

In today’s modern society, chocolate has been established as a premium lifestyle food product. Besides oil and coffee, cocoa is one of the most valuable commodities of global trade. About four per cent of cocoa beans traded on the world market originate from the noble criollo bean and are the basis of the so-called premium grand cru products (for more information, see www.icco.org). Due to fluctuating prices on the stock market and a current high price close to USD 2500 per tonne, chocolate manufacturers demand an efficient, reliable and speedy method for product and quality control. We report here on the analysis of cocoa with the help of near infrared (NIR) spectroscopy in the wavenumber range from about 4000 to 12000 cm-1 combined with chemometrics to determine the fat, protein, sugar and water content in chocolate base.

It is not just the flavour components of chocolate that largely influence the quality of chocolate – fat, protein, sugar and water also contribute to the desired mouth-feel, melting behaviour and flavour release. The quality of chocolate is significantly influenced by the content of the four constituents, namely fat, protein, sugar and water. It is, therefore, of great importance to develop and refine precise and reliable analytical methods to determine their amount in chocolate. The concentrations of these components are currently largely determined through costly analysis by external laboratories, which also delays the production process.

Research for industrial implementation

Issue 1 2012 / 6 March 2012 / Astrid Stevik, Research Scientist, SINTEF

In 2007, the Norwegian Research Council and several other funders enabled the (so far) largest competence building project in Norway within superchilling of fresh food, KMB Competitive Food Processing in Norway. SINTEF Energy Research has conducted the work together with dedicated industrial and research partners, and after five years of in-depth research on superchilling, the state-of-the-art boundary for the superchilling concept has been considerably moved.

The superchilling concept, lowering of the product temperature below the initial freezing point of the current product, has been known for decades. In spite of this, the industrial application of superchilling has been prevented by many barriers. Technological challenges have to some extent been an issue, but more important are the rigid conceptions on the disadvantages and limitations of superchilling which have prevented the breakthrough of this powerful tool for prolonging the shelf-life of fresh food. Thus, the KMB project was aimed at lowering the barrier for industrial implementation of superchilling by addressing some of the major challenges and myths through research, development and extensive cooperation with industrial partners.

On-line NIR for monitoring and control of fat in batches of meat trimmings

Issue 1 2012 / 5 March 2012 / Jens Petter Wold, Nofima AS

In the meat industry, the profit margins are small and profitability depends on optimal utilisation of the carcasses. From slaughter to final product, the industry controls much of the production according to certain quality criteria such as muscle quality, fat and connective tissue content. One of the main products from the pork and beef deboning plants is batches of meat trimmings, which are valued by fat content; the lower the fat content, the higher the purchase value. As much as 60 per cent of the beef carcasses and about 45 per cent of pork carcasses ends up as trimmings. Improved industrial control of fat content in these batches would substantially add to profitability for many companies.

Industrial practice today is that the workers in the processing line adjust their cutting, based on training and experience, to reach target fat per cent in the batches. They manually sort the trimmings to make batches of typically 14, 18 or 24 per cent fat. However, this is a difficult task and large deviations from target fat content are common. This has led to the development of automatic monitoring systems for fat in the meat. At least three different measurement principles are in use today. The systems are based on non-invasive techniques such as microwaves, X-rays or near-infrared spectro – scopy (NIR)1. These systems are used to check that the target fat content of the batches is correct. The microwave and NIR systems usually require that the meat is ground before measurement. Many customers prefer intact meat trimmings for further processing since this product is supposed to have better technological quality than ground beef.

Application of non-destructive techniques for the monitoring of red wine fermentation

Issue 6 2011 / 4 January 2012 / Susanna Buratti and Gabriella Giovanelli, Department of Food Science and Technology, University of Milan

The rapid pace of change in the wine industry calls for fast methods providing real time information in order to assure the quality of the final product. NIR and MIR spectroscopy combined with sensory-instrumental methods (electronic nose and electronic tongue) can provide an ideal solution to monitor molecular and sensory changes in wine during alcoholic fermentation. The objective of this work was to investigate the potential of NIR and MIR spectroscopy, electronic nose and electronic tongue associated with chemometric data analysis to monitor time-related changes that occur during red wine fermentation. Micro-fermentation trials were conducted during the 2008 and 2009 vintages in Valtellina viticultural area (Northern Italy). During fermentation, at each sampling time, spectra were collected by FT-NIR and FT-IR spectrometers and samples were analysed by electronic nose and electronic tongue. Chemical analyses were performed to evaluate sugar, phenolic compounds, ethanol and glycerol concentrations. Various multivariate statistical methods were applied in order to obtain regression and classification models.

One of the most promising directions for the development of new methods is the application of sensor systems, whose speed and on-line capabilities meet the demand of automation and continuous process control. Electronic nose and electronic tongue are technological attempts to mimic human senses. Both devices consist of chemical sensor arrays, coupled with an appropriate pattern recognition system able to produce a fingerprint of the product.

NIR and class-modelling methods for brand protection in food and beverages

Issue 4 2011 / 6 September 2011 / Professor Gerard Downey, Teagasc Food Research Centre Ashtown

The penetration of on-line NIR equipment in the food processing industries continues to grow as companies realise the full potential of this technique. For the most part, it is deployed to monitor concentrations of key components in a raw material or finished food product and, with the use of feedback control systems, rectify deviations from specification before any problems arise. However, NIR spectroscopy has the potential to play a much greater role in food companies and one key area has to be its use as a fingerprint technique to monitor conformance to specification or to afford a significant level of brand protection through real-time comparison of such spectral fingerprints to established company norms for any given product. This article reviews some recent developments in this area and, in particular, explains some new chemometric approaches which may be exploited for this purpose.

Quality is an important determinant of food choice by consumers but it is a credence attribute i.e. a property that cannot be verified by the consumer at point of purchase. Quality perception is most likely to be derived from other intrinsic or extrinsic clues such as brand name for example. To ensure repeat purchasing based on a quality attribute, therefore, a major challenge facing food companies is the collection of real-time data on products leaving the production line to demonstrate consistency i.e. continued conformance to their own production specifications.

Screening of acrylamide contents in potato crisps using VIS and NIR technology

Issue 2 2011 / 13 May 2011 / Vegard H. Segtnan and Svein H. Knutsen, Nofima AS, The Norwegian Institute of Food, Fisheries and Aquaculture Research

Acrylamide is considered a potential carcinogen and is present at elevated concentrations in different types of heat-treated foods. It is formed during baking, frying and roasting of raw materials from plant origin, particularly potatoes and cereals. Acrylamide is one of the reaction products in the Maillard reaction between the acrylamide precursors, amino acids and reducing sugars. A high natural level of acrylamide precursors and the specific processing conditions, mainly short frying at high temperatures between 160 and 190°C, put potato crisps in the group of food products with the highest level of acrylamide.

Monitoring the shelf life of minced beef meat using NIR and MIR spectroscopy

Issue 1 2011 / 3 March 2011 / Nicoletta Sinelli and Ernestina Casiraghi, DiSTAM, Department of Food Science and Technology, Università degli Studi di Milano

The meat processing industry has shown an increasing demand for fast and reliable methods to determine product quality characteristics during the last few decades. Traditional quality analyses based on chemistry and microbiology have several drawbacks, the most significant of which are low speed, use of chemical products, high manual dexterity, destruction of the sample and the physical distance between the process and the analytical instrument. Several fast and non destructive instrumental methods have been proposed. Infrared spectroscopy has proven to be an interesting and good analytical method for at-line, on-line and in-line analyses for a variety of meat products and quality parameters.

Ice fraction assessment by near infrared spectroscopy

Issue 4 2010 / 26 August 2010 / Astrid Stevik, Research Scientist, SINTEF

The discussion of the energy crisis for a steadily growing population is often limited to scarce amounts of electric power based on more or less environmentally friendly energy sources. However, lack of food, and in particular fresh food, is also part of the current energy crisis. Fresh food is one of the most valuable sources of energy and broad research and technology development is constantly ongoing to protect and utilise fresh food for human consumption in an energy efficient way.

The challenge for the food industry is consequently to conserve and utilise fresh food to give a high quality product, defeating the barriers of costs and varying storage/transport conditions. During the past decade, superchilling of fresh food has come up as an alternative and supplement to traditional conservation methods like freezing and chilling, and the R&D results for superchilling technology are promising.

The value of a number

Issue 4 2009 / 12 December 2009 / Richard Dempster, Director, Product and Technological Development, AIB International

Often, we get in the habit of accepting numbers from computerised displays without regard to accuracy or precision, and when we do evaluate a number, we often look at how precise it is. We forget that we can be very precisely wrong. We don’t really pay close attention to numbers from our bank’s ATM, a gas pump or a near infrared instrument unless we think they are substantially wrong. We certainly pay closer attention to our bank account but tend to accept numbers from other devices that may have greater monetary importance and higher error rates. In this article, I will give a brief overview of the main sources of error specifically associated with near infrared (NIR) instruments and what effect these errors have on the number displayed. The overall goal is to interpret the numbers correctly. In this article, I use NIR as a general term to include both reflective and transmission instruments.

Hyperspectral chemical imaging maps food composition in laboratory and on-line

Issue 3 2009 / 10 September 2009 / T. Hyvärinen & H. Karjalainen, SPECIM, Spectral Iimaging Ltd; D. Nilsson, Umbio AB and K. Lynch, Gilden Photonics

Hyperspectral imaging combines digital imaging with precise spectral information in each image pixel. It enables composition mapping in food and agricultural raw materials and products based on differences in the spectral signatures of the various chemical ingredients. Advances in hyperspectral cameras and image processing solutions are now making hyperspectral imaging an efficient tool for high throughput laboratory analyses, and even making it possible to apply it on-line in quality assurance and process control applications.

  • Page 1 of 2
  • 1
  • 2
  • >

 

PGlmcmFtZSBzcmM9Imh0dHBzOi8vd3d3LmJyaWdodHRhbGsuY29tL2NsaWVudHMvanMvZW1iZWQvZW1iZWRfZnJhbWUuaHRtbD9wbGF5ZXI9c2xpZGVfd2lkZ2V0JmNoYW5uZWxpZD03MjUzJmNvbW11bmljYXRpb25pZD0xMDI2NjcmdGhlbWU9JnRyYWNraW5nQ29kZT0iIiIgc3R5bGU9Im92ZXJmbG93OmhpZGRlbjsiZnJhbWVib3JkZXI9IjAiIHdpZHRoPSIzMDAiIGhlaWdodD0iMjUwIiBzY3JvbGxpbmc9Im5vIiBhbGxvd2Z1bGxzY3JlZW4gd2Via2l0QWxsb3dGdWxsU2NyZWVuIG1vemFsbG93ZnVsbHNjcmVlbiBhbGxvd1RyYW5zcGFyZW5jeT0idHJ1ZSI+PC9pZnJhbWU+