• Facebook
  • Twitter
  • LinkedIn
  • Google+
  • RSS

Near Infrared Spectroscopy (NIR) - Articles and news items

Union Park Capital acquires NIR company Unity Scientific

Industry news  •  4 September 2015  •  Victoria White

Union Park Capital has acquired Unity Scientific, a leader in the manufacturing and sales of near infrared instrumentation and wet chemistry analyzers…

NIR hyperspectral imaging for detection of nut contamination

Issue 4 2015  •  1 September 2015  •  Puneet Mishra, Belén Diezma and Pilar Barreiro, Universidad Politécnica de Madrid

‘Nut’ is used to describe a wide range of seeds with a seed coat or shell. Because of high-energy content, micronutrients and positive global health impact, nuts have been present for centuries in human diet. However, over recent decades they have increasingly been found to induce adverse health effects. With an increasing number of individuals affected with allergenic reactions, nuts allergies are a growing global concern. Nuts are common food allergens and are the leading cause of fatalities from food-induced allergenic reactions in developed countries. Allergenic conditions arising from the consumption of nuts are generally thought to be life-long and typically severe. No definite treatment is yet available for nut and seed allergies. Dietary avoidance is the primary way to manage these allergies and requires the ability in the food industry to identify peanuts or tree nuts…

Whitepaper: Color measurement of roasted coffee using HunterLab spectrophotometers

Whitepapers  •  1 June 2015  •  HunterLab

This free whitepaper discusses the use of color measurement spectrophotometers (visible spectrum spectrophotometers) for determining the roast color of coffee products…

Peanut contamination could be easier to detect with infrared hyperspectral imaging

Industry news  •  20 April 2015  •  Victoria White

New research has revealed that peanut contamination in food products could soon become much easier to detect using NIR hyperspectral imaging (HSI)…

Processing & Sensor Technology supplement 2015

Issue 1 2015, Supplements  •  9 March 2015  •  New Food magazine

In this Processing & Sensor Technology supplement we look at Innovative sensor technologies for the food industry, the use of Vis/NIR spectroscopy to evaluate quality craft beer during fermentation, and industry experts participate in our Processing & Sensor Technology roundtable…

Whitepaper: NIR Spectroscopy and Wine – Class-modeling for the characterization of Italian red wine

Whitepapers  •  1 September 2014  •  BUCHI

Near-infrared spectroscopy, combined with multivariate data analysis, was applied in order to distinguish wine samples according to the grape variety…

Quality Control supplement 2014

Issue 3 2014, Supplements  •  23 June 2014  •  Vincent Baeten, Philippe Vermeulen, Juan Antonio Fernández Pierna, Pierre DardenneSatu Salo, Koni Grob, Bart Roodenburg, Monika Hohmann, Christine Felbinger, Norbert Christoph, Helmut Wachter, Ulrike Holzgrabe

Targeted to untargeted detection of contaminants and foreign bodies in food and feed using NIR spectroscopy, Quantitative determination of taurine in energy drinks by 1H NMR spectroscopy, and Quality Control Roundtable…

Near Infrared: Food fraud and NIRS

Issue 1 2014  •  5 March 2014  •  Saskia van Ruth, Head of Authenticity & Novel Foods Business Unit & Professor of Food Authenticity and Integrity and Rob Frankhuizen, Scientist, State Institute for Quality Control of Agricultural Products, RIKILT Wageningen University and Research Centre

Nowadays foods and ingredients are sourced from many different parts of the globe. Since the 1960s, global food transport has been increasing at an exponential rate, faster than food production itself. For certain countries, this network ensures access to any food item regardless of season or origin. The number of countries relying on international food trade has increased and traded food changed from raw materials towards processed and branded products. As a consequence, trade fluxes between countries to form a complex, extensive, intersecting network. Optimised for rapid, low-cost production from all sources, it has consequently resulted in fragile networks that are vulnerable to food fraud that reaches every table in the world…

Whatever it takes for protein analysis: Kjeldahl, Dumas, or NIR

Webinars  •  30 September 2013  •  François Bourdichon (Barry Callebaut ), William Ickes, Jürgen Müller & Giovanni Campolongo (BÜCHI)

Whereas Kjeldahl is a proven method for all kind of sample matrices, Dumas excels in unattended processing at high throughput, and NIR is matchless in terms of immediate and comprehensive multi-component analysis. BUCHI introduces you to the Master series, which includes the KjelMaster, DuMaster, and NIRMaster instruments for protein analysis…

Infrared spectroscopy and its role to monitor wine fermentation

Issue 4 2013  •  28 August 2013  •  Daniel Cozzolino School of Agriculture, Food and Wine, University of Adelaide

The term Process Analytical Technologies (PAT) describes the field of process analysis and measurement technologies that have been expanded to include several physical, chemical, mathematical and other analytical tools used to characterise chemical and biological processes. Over the past few years, on- in- and at-line analysis, the so-called PAT technologies, have demonstrated themselves to be one of the most efficient and advanced tools for continuous monitoring, as well as controlling the processes and the quality of raw ingredients and products in several applications among food processing, petrochemical and pharmaceutical industries.

Coupling NIR spectroscopy and chemometrics for the assessment of food quality

Issue 1 2013  •  28 February 2013  •  Federico Marini, Department of Chemistry, University of Rome ‘La Sapienza’

In the last 30 years, there has been increasing attention paid to the possibility of using Near Infrared (NIR) spectroscopy to deal with different aspects of food quality assessment. Indeed, the intrinsic characteristics of this technique, which, requiring little or no sample pretreatment, allows high throughput analyses in a rapid and non-invasive/non-destructive way, together with its easy on-line applicability, make NIR particularly suitable for real-time assessment and control of food quality both in a laboratory and on an industrial scale.

NIRS of chocolate and its chemometric analysis

Issue 6 2012  •  11 January 2013  •  Jürgen Stohner, Brenno Zucchetti, Fabian Deuber and Fabian Hobi, ZHAW Zurich University of Applied Sciences, ICBC Institute of Chemistry and Biological Chemistry and Bernhard Lukas and Manfred Suter, Max Felchlin AG

In today’s modern society, chocolate has been established as a premium lifestyle food product. Besides oil and coffee, cocoa is one of the most valuable commodities of global trade. About four per cent of cocoa beans traded on the world market originate from the noble criollo bean and are the basis of the so-called premium grand cru products (for more information, see www.icco.org). Due to fluctuating prices on the stock market and a current high price close to USD 2500 per tonne, chocolate manufacturers demand an efficient, reliable and speedy method for product and quality control. We report here on the analysis of cocoa with the help of near infrared (NIR) spectroscopy in the wavenumber range from about 4000 to 12000 cm-1 combined with chemometrics to determine the fat, protein, sugar and water content in chocolate base.

It is not just the flavour components of chocolate that largely influence the quality of chocolate – fat, protein, sugar and water also contribute to the desired mouth-feel, melting behaviour and flavour release. The quality of chocolate is significantly influenced by the content of the four constituents, namely fat, protein, sugar and water. It is, therefore, of great importance to develop and refine precise and reliable analytical methods to determine their amount in chocolate. The concentrations of these components are currently largely determined through costly analysis by external laboratories, which also delays the production process.

Research for industrial implementation

Issue 1 2012  •  6 March 2012  •  Astrid Stevik, Research Scientist, SINTEF

In 2007, the Norwegian Research Council and several other funders enabled the (so far) largest competence building project in Norway within superchilling of fresh food, KMB Competitive Food Processing in Norway. SINTEF Energy Research has conducted the work together with dedicated industrial and research partners, and after five years of in-depth research on superchilling, the state-of-the-art boundary for the superchilling concept has been considerably moved.

The superchilling concept, lowering of the product temperature below the initial freezing point of the current product, has been known for decades. In spite of this, the industrial application of superchilling has been prevented by many barriers. Technological challenges have to some extent been an issue, but more important are the rigid conceptions on the disadvantages and limitations of superchilling which have prevented the breakthrough of this powerful tool for prolonging the shelf-life of fresh food. Thus, the KMB project was aimed at lowering the barrier for industrial implementation of superchilling by addressing some of the major challenges and myths through research, development and extensive cooperation with industrial partners.

On-line NIR for monitoring and control of fat in batches of meat trimmings

Issue 1 2012  •  5 March 2012  •  Jens Petter Wold, Nofima AS

In the meat industry, the profit margins are small and profitability depends on optimal utilisation of the carcasses. From slaughter to final product, the industry controls much of the production according to certain quality criteria such as muscle quality, fat and connective tissue content. One of the main products from the pork and beef deboning plants is batches of meat trimmings, which are valued by fat content; the lower the fat content, the higher the purchase value. As much as 60 per cent of the beef carcasses and about 45 per cent of pork carcasses ends up as trimmings. Improved industrial control of fat content in these batches would substantially add to profitability for many companies.

Industrial practice today is that the workers in the processing line adjust their cutting, based on training and experience, to reach target fat per cent in the batches. They manually sort the trimmings to make batches of typically 14, 18 or 24 per cent fat. However, this is a difficult task and large deviations from target fat content are common. This has led to the development of automatic monitoring systems for fat in the meat. At least three different measurement principles are in use today. The systems are based on non-invasive techniques such as microwaves, X-rays or near-infrared spectro – scopy (NIR)1. These systems are used to check that the target fat content of the batches is correct. The microwave and NIR systems usually require that the meat is ground before measurement. Many customers prefer intact meat trimmings for further processing since this product is supposed to have better technological quality than ground beef.

Application of non-destructive techniques for the monitoring of red wine fermentation

Issue 6 2011  •  4 January 2012  •  Susanna Buratti and Gabriella Giovanelli, Department of Food Science and Technology, University of Milan

The rapid pace of change in the wine industry calls for fast methods providing real time information in order to assure the quality of the final product. NIR and MIR spectroscopy combined with sensory-instrumental methods (electronic nose and electronic tongue) can provide an ideal solution to monitor molecular and sensory changes in wine during alcoholic fermentation. The objective of this work was to investigate the potential of NIR and MIR spectroscopy, electronic nose and electronic tongue associated with chemometric data analysis to monitor time-related changes that occur during red wine fermentation. Micro-fermentation trials were conducted during the 2008 and 2009 vintages in Valtellina viticultural area (Northern Italy). During fermentation, at each sampling time, spectra were collected by FT-NIR and FT-IR spectrometers and samples were analysed by electronic nose and electronic tongue. Chemical analyses were performed to evaluate sugar, phenolic compounds, ethanol and glycerol concentrations. Various multivariate statistical methods were applied in order to obtain regression and classification models.

One of the most promising directions for the development of new methods is the application of sensor systems, whose speed and on-line capabilities meet the demand of automation and continuous process control. Electronic nose and electronic tongue are technological attempts to mimic human senses. Both devices consist of chemical sensor arrays, coupled with an appropriate pattern recognition system able to produce a fingerprint of the product.

  • Page 1 of 2
  • 1
  • 2
  • >