• Facebook
  • Twitter
  • LinkedIn
  • Google+
  • RSS

Jens Petter Wold - Articles and news items

On-line NIR for monitoring and control of fat in batches of meat trimmings

Issue 1 2012  •  5 March 2012  •  Jens Petter Wold, Nofima AS

In the meat industry, the profit margins are small and profitability depends on optimal utilisation of the carcasses. From slaughter to final product, the industry controls much of the production according to certain quality criteria such as muscle quality, fat and connective tissue content. One of the main products from the pork and beef deboning plants is batches of meat trimmings, which are valued by fat content; the lower the fat content, the higher the purchase value. As much as 60 per cent of the beef carcasses and about 45 per cent of pork carcasses ends up as trimmings. Improved industrial control of fat content in these batches would substantially add to profitability for many companies.

Industrial practice today is that the workers in the processing line adjust their cutting, based on training and experience, to reach target fat per cent in the batches. They manually sort the trimmings to make batches of typically 14, 18 or 24 per cent fat. However, this is a difficult task and large deviations from target fat content are common. This has led to the development of automatic monitoring systems for fat in the meat. At least three different measurement principles are in use today. The systems are based on non-invasive techniques such as microwaves, X-rays or near-infrared spectro – scopy (NIR)1. These systems are used to check that the target fat content of the batches is correct. The microwave and NIR systems usually require that the meat is ground before measurement. Many customers prefer intact meat trimmings for further processing since this product is supposed to have better technological quality than ground beef.

Online transflectance NIR imaging of foods

Issue 1 2007, Past issues  •  7 March 2007  •  Vegard H. Segtnan, Jens Petter Wold and Martin Høy, Matforsk AS, Norway and Jens T. Thielemann and Jon Tschudi, SINTEF ICT, Norway

Most solid foods are heterogeneous on one level or another. Minced meat or an intact piece of meat, for example, will have smaller or larger local regions that are almost pure fat, pure lean meat or pure connective tissue. For such heterogeneous foods the distribution of the local differences is approximately the same throughout the sample.

 

Webinar: Allergen testing and risk management within food manufacturingWATCH NOW
+ +